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a b s t r a c t

The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating
moving body incompressible viscous flow problems in 3D space. The method combines
the merits of cost-efficient and accurate conventional finite difference approximations
on Cartesian grids with the geometric freedom of generalized finite difference (GFD)
approximations on meshfree grids. Error minimization in GFD is carried out by singular
value decomposition (SVD). The Arbitrary Lagrangian–Eulerian (ALE) form of the
Navier–Stokes equations on convecting nodes is integrated by a fractional-step projection
method. The present hybrid grid method employs a relatively simple mode of nodal admin-
istration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-
volume and finite element methods. Boundary conditions are precisely implemented on
boundary nodes without interpolation. The present scheme is validated by a moving patch
consistency test as well as against published results for 3D moving body problems. Finally,
the method is applied on low-Reynolds number flapping wing applications, where large
boundary motions are involved. The present study demonstrates the potential of the pres-
ent hybrid meshfree-and-Cartesian grid scheme for solving complex moving body prob-
lems in 3D.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flows involving moving bodies/boundaries are frequently encountered in engineering applications and everyday living.
Examples are flows in turbomachines, artificial heart valves and extrusion processes. Further examples include flows asso-
ciated with store separation problems during flight and self-propulsion problems in fish swimming and bird/insect flight etc.
These are unsteady flows in which the fluid boundaries are constantly changing, either in a prescribed manner or in a man-
ner determined by forces of interaction between the phases. The subject has attracted considerable attention over the years,
and important contributions have been made both in methods and applications. Three main groups of methods are currently
available for dealing with moving boundary problems. They are the mesh-based finite-element and finite-volume methods,
Cartesian grid methods and the overset or chimera grid methods.

Mesh-based finite element methods (FEM) and finite-volume methods (FVM) have become highly refined and well devel-
oped over the years into powerful and popular numerical tools for the solution of a wide range of engineering problems. They
have also been variously adapted for the solution of moving boundary flow problems. The main limitation for conventional
FEM and FVM in moving body/boundary flow problems is the need to constantly regenerate the mesh to accommodate the
changing solution domain. This inevitably leads to increased costs in mesh administration and data interpolation, and a pos-
sible increase in numerical errors. A number of numerical approaches have been proposed to improve the efficiency and
. All rights reserved.
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accuracy, and only a few will be mentioned here. To avoid regenerating the mesh, Lilek et al. [1,2] have developed a multi-
block FV method based on sliding mesh to solve moving boundary problem. A FE formulation based on the P2P1 Galerkin
method and ALE technique has also been developed by Hu and his co-workers [3,4] and recently been improved by Choi
[5] and Hu et al. [6]. The method has also been used in combination with an adaptive mesh refinement technique and applied
to simulate the motion of a large number of particles in fluids [4–6]. Another recent innovation of conventional FEM to deal
with problems with moving boundaries is the particle finite element method (PFEM) proposed by Onate et al. [7].

The best known Cartesian grid method for moving boundary problem is the immersed boundary method (IBM) of Peskin
[8]. The IBM treats the boundary of an immersed object as a set of Lagrangian fluid particles amid a background of fixed
Cartesian grid nodes. The key merits of Peskin’s IBM are the simplicity of the grid system and the resultant efficiency in com-
putation. But the main drawback is that the piecewise continuous solution across the immersed boundary is smeared by the
distribution of the singular forces over several grid nodes, leading to reduced spatial resolution and accuracy near the bound-
ary (frequently of first order). To overcome the limitation of the IBM, the immersed interface method (IIM) was proposed by
Leveque and Li [9]. This method modifies the governing equations at the immersed boundary nodes by adding forcing func-
tions constructed to enforce a set of appropriate jump conditions at the interface. The method has been claimed to maintain
sharp-interfaces and second-order accuracy. Li and Lai [10], Lai and Peskin [11], and Xu et al. [12] have implemented the IIM
for 2D flows and achieved second-order spatial accuracy. Jump conditions for interfaces in 3D have also been derived by Xu
and Wang [13,14]. New immersed boundary methods that can avoid the problem of smeared interfaces have been developed
by several authors. A typical example is the sharp interface immersed boundary method proposed by Mittal et al. [15]. This
method applies a ghost cell technique to satisfy the boundary conditions on the immersed boundary. The method has been
developed to simulate the compressible flows with complex shaped stationary immersed boundary [16] and the fluid-struc-
ture interaction problems [17]. In other newly developed immersed boundary methods, the interface is kept sharp by han-
dling the boundary body force with projection-based method which satisfies the non-slip boundary condition [18] or exactly
guarantees conservation of momentum [19].

Other Cartesian grid methods include the cut-cell methods. In this method, the fluxes or field data at intersection between
the sharp boundaries and the Cartesian base mesh are determined by interpolating functions. The cut-cell method has been
integrated into both finite difference (FD) [20] and FV [21,22] methods to solve both stationary and moving boundary prob-
lems. A similar method that uses interpolating functions to reconstruct solution near the boundaries is the Hybrid Cartesian/
immersed boundary method [23,24]. It is worth noting that Marella et al. [25] has developed a Cartesian grid method in a
finite difference framework that is much simpler than the cut-cell approach. In this method, the immersed boundary is rep-
resented by level-sets and no source term is applied to include boundary effect. This method is thus naturally suitable for
moving boundary problems and can be easily apply to other types of flow problems including multiphase flows [26] and
phase change [27]. More recently, this method has been further enhanced by adopting adaptive mesh technique as well
as parallelization technique [28].

The overset-grid method, pioneered by Benek et al. [29], is based on a collection of structured component grids. Each im-
mersed body is enveloped within its own separate structured grid component. Component grids are connected by interpo-
lation conditions. The use of structured components contributes to achieving good computational efficiency. However, a
major problem encountered in the simulations, especially for 3D problems, is that global conservation is not easy to maintain
[30]. To ensure global mass conservation in each subdomain, Zang and Street [31] implemented a mass imbalance correction
on the interpolated velocity field in their overset-grid method for solving the 3D, unsteady, Navier–Stokes equations. A mass-
flux based interpolation (MFBI) algorithm has also been introduced by Tang et al. [32] to ensure global mass conservation in
their overset-grid scheme. The MFBI algorithm avoids explicit correction to the interpolated velocity field, and thus simpli-
fies the implementation of the method in 3D.

Three-dimensional (3D) moving body/boundary flow problems are solved by a hybrid meshfree-and-Cartesian grid meth-
od in the present paper. In this approach, an enveloping cloud of meshfree nodes discretizes the moving body/boundary and
its immediate fluid neighbourhood. The moving body/boundary and its enveloping meshfree nodal cloud are superposed on
a background space of Cartesian grid points. Spatial derivatives at Cartesian grids are carried out by conventional finite dif-
ference (FD) wherever applicable, while a generalized finite difference (GFD) method is applied at all meshfree nodes. The
meshfree method on irregular nodal grids was originally proposed by Liszka and Orkisz [33] in applied mechanics, and fur-
ther developed by Liszka [34], Liszka et al. [35], Duarte and Oden [36] and others. Ding et al. [37,38] subsequently extended
the method to solve incompressible fluid flow problems in the streamfunction-vorticity formulation. The method was more
recently developed by Chew et al. [39] to simulate moving body flow problems on hybrid meshfree-and-Cartesian grids,
whereby flow at moving meshfree nodes is governed by a convective form of the Navier–Stokes equations.

Considerably more grid points or nodes are usually needed to define the spatial derivatives on an irregular grid using
GFD; 9 nodes (the minimal set) are needed to define second-order partial space derivatives to second-order accuracy in
2D space. Least square approximation on an over-determined set of nodal data (>9) is usually used to overcome potential
ill-conditioning arising from poor nodal configuration. GFD operations are more costly than conventional FD ones, and their
application are thus confined only to complex boundary regions by employing a hybrid meshfree-and-Cartesian grid system.
The hybrid grid exploits the geometric freedom of meshfree nodes to accurately resolve complex surfaces, while simulta-
neously allows one to take advantage of the high computational efficiency and accuracy of FD approximations in the bulk
of the flow domain. Since only nodal indices or position data are needed in difference approximations, the hybrid grid dif-
ference scheme needs to maintain only a relatively simple geometric data base.
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In the current study, Chew et al. [39]’s hybrid grid scheme is further developed for moving body/boundary problems in 3D
space. A singular value decomposition (SVD) form of the GFD approximation [40,41] is used here. While somewhat more
expensive than the regular least square approximation, SVD–GFD has been shown to be more robust in applications [40],
especially those involving close interactions between moving bodies. As GFD method is based on the Taylor series expansion,
it could be rendered to higher order if necessary by the inclusion of more support nodes. The present SVD–GFD method offers
the following advantages by combining the meshfree and Cartesian approaches: (1) good efficiency as the bulk computation
is based on standard 7-point finite difference scheme, (2) precise implementation of boundary conditions, (3) grid flexibility
including the ability to accommodate complex geometry with good grid resolution and grid orthogonality at boundaries, (4)
grid administration is relatively simple, and (5) grid/mesh regeneration frequently used in mesh-based methods is avoided
and data interpolation is kept at a very minimal level.

The present study focuses on flow driven by solid body/boundary with prescribed motion. The case of fluid-fluid bound-
ary, which is interactive in character, is not considered here. A moving nodal patch test shows that the mixed Lagrangian–
Eulerian formulation for convecting nodes in flow produces results that are accurate and fully consistent with those from
stationary Cartesian grid computation. The method is validated against published results for 3D moving body problems. Fi-
nally, the method is demonstrated on low-Reynolds number (Re < 200) flapping wing applications, where large and complex
boundary motions are involved.
2. Spatial discretization on hybrid grid

The discretization of fluid space comprises a background of Cartesian grid nodes and clouds or patches of meshfree grids/
nodes around immersed bodies/boundaries (Fig. 1). Cartesian nodes that are overlapped by a solid body are not involved in
the flow computation. Cartesian nodes that are overlapped by a meshfree nodal cloud may either be included or excluded
from flow computation. It is customary to exclude them to reduce unnecessary computations as well as to maintain good
nodal quality. Further discussion on nodal grid organization in the 3D context is given in Section 4.

The standard 7-point central finite difference scheme is applied at all Cartesian nodes that do not have meshfree node(s)
within its closed ½�Dx;Dx� � ½�Dy;Dy� � ½�Dz;Dz� neighbourhood. These constitute the bulk of the computational nodes in
many applications. All other nodes are subject to the SVD-based generalized finite difference (GFD) treatment [41], which
is briefly reviewed below for completeness.

The generalized finite difference (GFD) method is based on the Taylor series expansion and singular value decomposition
(SVD) is used to obtain the pseudo-inverse of the resulting approximation matrix. For a function f ðxÞ of the 3D coordinate
variable x ¼ ðx; y; zÞ, the value of the function at x1 ¼ x0 þ Dx1 is given in terms of the derivative values of the function at the
reference grid or node point x0 to order m by:
Fig. 1.
envelop
f ðx1Þ ¼ f ðx0Þ þ
Xm�1

j¼1

1
j!
ðDx1 � rx0 Þ

jf ðx0Þ þ OðjDx1jmÞ; ð1Þ
If the values f ðxiÞ ¼ fiði ¼ 0;1; . . . ;nÞ of the function are known at a number of neighbouring points xi ¼ x0 þ Dxi, one may
truncate the Taylor series Eq. (1) appropriately and approximate the derivatives rj

x0
f ðx0Þ of the function at the reference

node x0 by solving a system of linear equations. For such an approximation, one will typically select the points
x

y 

Schematics of the hybrid meshfree-and-Cartesian grid: � meshfree boundary nodes defining an immersed body; � meshfree cloud of nodes
ing the body; � Cartesian background nodes.
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xiði ¼ 1; . . . ;nÞ, which are in the immediate or near-neighbourhood of x0. These neighbours or support nodes xi are usually
taken to be points within a prescribed distance d0 from the reference node, i.e. jxi � x0j ¼ jDxij 6 d0. When the Taylor series
Eq. (1) is truncated after the third-order derivative (i.e. m = 4), we obtain the following linear system,
Dfn�1 ¼ ½S�n�19@f19�1; ð2Þ
which relates the derivatives @f19�1 ¼ @x; @y; @z; @
2
x ; @x@y; . . . ; @3

y ; @
3
z

� �T
f jx0

of f at x0 to the functional values of f at the reference
node x0 and the n support nodes. Here Dfn�1 ¼ ðf1 � f0; f2 � f0; . . . ; fn � f0ÞT , and
½S�n�19 ¼

Dx1 Dy1 Dz1 0:5Dx2
1 0:5Dy2

1 0:5Dz2
1 . . .

Dx2 Dy2 Dz2 0:5Dx2
2 0:5Dy2

2 0:5Dz2
2

Dx3 Dy3 Dz3 0:5Dx2
3 0:5Dy2

3 0:5Dz2
3

. . . . . .

Dxn Dyn Dzn 0:5Dx2
n 0:5Dy2

n 0:5Dz2
n

2
6666664

3
7777775
: ð3Þ
The matrix ½S�n�19 contains only information about the positions of the n support nodes xiði ¼ 1;2; . . . ;nÞ relative to the ref-
erence or central node x0 ¼ ðx0; y0; z0Þ. Eq. (2) is exactly closed for n = 19. As with most unstructured grid/mesh schemes for
fluid flow computation, the matrices obtained via the application of GFD are not symmetric. The linear system for n = 19
tends to be ill-conditioned. Ill-conditioning arises from poor spatial arrangement of the support nodes for causes ranging
from extremely close separation between some nodes to highly irregular spread of nodes around the reference node. This
difficulty can be overcome by including additional support nodes to yield an over-determined algebraic ðn > 19Þ system
in (2); and a best-approximation solution for (2) based on the minimization of the L2-norm kEk2 of the residual error vector
E ¼ Dfn�1 � ½S�n�19@f19�1 is then sought. The Singular Value Decomposition (SVD) approach to minimization of the L2 error
norm is adopted here. The SVD scheme is more robust than the conventional normal equation approach in being more stable
and accurate and will yield a solution (one with minimum norm) even when the system is under-determined ðn < 19Þ.
Moreover, it also permits regularization in term of omission of contributions from the very small eigenvalues [42], and for-
mal accuracy is not compromised if n P 19.

The components of the residual vector E represent the errors of approximation at the various support nodes. A distance-
based weighting that gives greater weight to the errors at nodes nearer to the reference node is usually applied to enhance
the accuracy of derivative approximation. This takes the form a diagonal matrix ½Wn� applied to E; where the ith component
of ½Wn� is a function of the normalized distance (i.e. jxi � x0j=d0) from the reference node. The SVD determined solution for
derivatives at the reference node thus has the form of
@f19�1 ¼ ½WnS�p�n�19½Wn�Dfn�1; ð4Þ
where ½Wn� is the weighting matrix and ½WnS�p�n�19 denotes the pseudo-inverse of ½WnS�n�19 solved by an SVD algorithm. Some
of the applicable weighting functions have been presented in Wang et al. [41].
3. ALE form of Navier–Stokes equations and projection method

Incompressible three-dimensional fluid flow is governed here by the Navier Stokes equation in a mixed Lagrangian–Eule-
rian form [43]. The Navier–Stokes and continuity equation at a convecting node, say b, are given by
@u
@t

����
b

¼ Sðxb; tÞ � �ðu� ubÞ � ru�rpþ 1
Re
r2u; ð5Þ

r � u ¼ 0; ð6Þ
where uðx; tÞ is the non-dimensional Eulerian velocity field and ub is the convection velocity of the node b at its current po-
sition xbðtÞ. ð@u=@tÞb denotes time derivative of u following the convecting node. For a stationary node, ð@u=@tÞb reduces to
the customary partial time derivative of uðx; tÞ. Re ¼ UL=m is the Reynolds number where U and L are the velocity and length
scales, respectively appropriate to the problem, and t is the kinematic viscosity of the fluid.

As mentioned above, spatial derivatives of the present form of Navier–Stokes equations are carried out by a conventional
FD at Cartesian grids while a GFD at meshfree nodes. GFD, as well as conventional FD, is not intrinsically conservative. How-
ever, for incompressible viscous flow, where the solution is necessarily smooth, conservation errors are part of the formal
discretization errors, which may be kept as small as desirable through grid refinement.

ALE implementation must satisfy certain generalized conservation conditions [44] when it is applied to mesh/volume
based schemes such as FE and FV. This is because mesh deformation with time may cause mass and momentum to be con-
vected in and out of a cell. These conservation conditions are not applicable to nodal-base schemes such as the present – in
which the solution at the node represents the changing Eulerian field as perceived by the observer on the moving node. The
meshfree nodes represent moving sensors of the underlying Eulerian flow field.

The above issues on conservation have been discussed at length in Ang et al. [40], where conservation errors in mass and
momentum were examined for problems involving the very close interaction of moving bodies. The results demonstrated



2318 X.Y. Wang et al. / Journal of Computational Physics 229 (2010) 2314–2338
the conservation errors for mass and momentum are quite small (less than 0.005% and 0.01%, respectively for the 2D prob-
lem investigated) despite the non-conservative nature of the GFD discretization scheme.

The projection method and its variants are widely used in the literatures [45–48]. A second-order implicit projection
method, based on a fractional-step Crank–Nicolson scheme is applied here:
u	 � un

Dt

����
b

¼ �arq� 1
2
ððu� ubÞ � ruÞn þ ððu� ubÞ � ruÞnþ1
h i

þ 1
2Re
r2 un þ u	ð Þ; ð7Þ

unþ1 � u	

Dt

����
b

¼ �rUnþ1; ð8Þ
where q is a suitable approximation for the pressure field pnþ1=2 ¼ ðpn þ pnþ1Þ=2 and Unþ1 is an auxiliary field variable. The
requirement that unþ1 be divergence-free leads to the following Poisson equation for Unþ1
r2Unþ1 ¼ 1
Dt
r � u	; ð9Þ
which is solved subject to the Neumann boundary condition ðn � rUnþ1Þ@X ¼ 0, where n denotes the normal to the boundary.
Eq. (8) suggests that a suitable boundary condition for the intermediate velocity field is,
u	j@X ¼ unþ1j@X: ð10Þ
This boundary condition is easy to apply, especially for flow problems with prescribed boundary velocity. It is also consistent
with the interpretation of u	 as an intermediate approximation to the velocity field unþ1 at time level n + 1. The updating of
the velocity and pressure fields follows
unþ1 ¼ u	 � ðDtÞrUnþ1; ð11Þ

pnþ1=2 ¼ aqþUnþ1 � Dt
2Re
r2Unþ1: ð12Þ
It is important to interpret the terms in the above Eqs. (7)–(12) correctly for convecting nodes. In particular, the intermediate
velocity u	 and all terms denoted to be at time level n + 1 should be evaluated based on the position of the nodes at that time.

When a ¼ 0, we have a pressure-free formulation in that no pressure is involved in the computation of the intermediate
velocity field. This formulation is equivalent to Pm III in Brown et al. [48] and similar to the scheme of Kim and Moin [47].
Intermediate schemes can be obtained for value of a between 0 and 1. These schemes are second-order when appropriately
implemented – this generally requires careful implementation of the velocity boundary condition Eq. (10) to ensure that u	

is indeed a good estimation of the velocity field unþ1. When a ¼ 1, we recover the Pm II formulation described by Brown et al.
[48], which is second-order accurate for both velocity and pressure fields.

An implementation with a ¼ 1 (Pm II formulation) is adopted here in which Eqs. (7), (9), (11) and (12) are solved together
iteratively at every time level – this differs from the usual semi-implicit implementation. The function q in Eqs. (7) and (12) is
initialized with pn�1=2 at the start of iteration at time level n + 1; thereafter the latest estimate for pnþ1=2 from Eq. (12) is used
during iteration. The intermediate velocity field u	 is similarly updated with the latest estimate of unþ1 from Eq. (11) during
iteration. At convergence Unþ1 ! 0; u	 ! unþ1, and q ! pnþ1=2.

4. Aspects of numerical implementation

Since GFD allows spatial discretization to be performed on arbitrary nodal configurations, all flow computations are car-
ried out within a single global Cartesian reference frame irrespective of the complexity of computational domain. For over-
set/chimera grid methods, it customary to use a different coordinate representation for each component grids. This section
explains key aspects of nodal administration employed in this work.

4.1. Grid generation – motion of convecting nodes

Domains with complex immersed bodies and/or boundaries that move with prescribed motion may be easily handled by
the present GFD method. The first step of grid generation is to define the immersed bodies or fluid-solid interfaces by a set of
meshfree boundary-fitted nodes. This is best accomplished by triangulating the bodies/surfaces using a conventional finite
element mesh generator; although for simple analytically-defined body/surface alternative methods of generating the
boundary nodes may be devised. The triangulation of the surface also facilitates the computation of the surface normal n
at the boundary nodes. This is needed for the computation of the normal derivative n � r during flow simulation (Section
3) and in the next step of grid generation described below. The normal at a boundary node is simply approximated here
by taking the simple average of the unit normals at the triangular faces surrounding the node, following the studies of Gou-
raud [49], and Thürmer and Wüthrich [50]. The mesh information derived from surface triangulation is not used beyond this
point.

Having thus discretized and defined the immersed objects or surfaces by their sets of meshfree boundary nodes, it re-
mains to discretize the surrounding fluid domain. In theory, the GFD scheme can deal with any kind of unstructured nodal
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distribution. For simplicity, two types of grid are described here. The first is the hybrid grid shown in Fig. 1. Here an immersed
body/surface is enveloped over by several layers of meshfree nodes, which are typically generated along the outward nor-
mals n emanating from the surface nodes. Typically four to six enveloping layers of meshfree nodes are generated around an
immersed body. The boundary and enveloping meshfree nodes are then superposed on a coarser background of Cartesian
nodes. Moving away from the surface, the meshfree nodes are usually seeded with increasing nodal intervals, so as to give
good resolution to viscous effects close to the surface and to offer compatible interval matching with the background Carte-
sian nodes for the outermost layer of meshfree nodes. Special attention is needed for node seeding at sharp convex and con-
cave corners in this gridding approach to ensure uniform seeding. It is worth mentioning that this method also can be used to
generate the meshfree nodes around a deformable body [51]. When a body deforms, the existing meshfree nodes automat-
ically move/re-adjust with the changing orientation of the local surface normal along which they had been spawn. The
numerical process remains the same as that for a moving rigid non-deforming body. The grid remains orthogonal or nearly
so on smooth surfaces despite deformation. The second type of hybrid grid is shown in Fig. 2. In this case, the body is envel-
oped by a Cartesian-type nodal patch/cloud, which may be derived from a refinement of Cartesian background grid prior to
the start of simulation. Note that we can only apply one layer of meshfree nodes, i.e., the surface nodes that define or specify
the body geometry. This type of grid can be regarded as a special case of the first or second type of grid. In this situation, the
present scheme can be defaulted to a purely Cartesian scheme.

For both types of grid distribution, a Cartesian background grid is present where inexpensive and accurate conventional
finite difference scheme may be suitably applied. For many flow problems, especially those involving an external flow, the
GFD-treated meshfree nodes will typically form only a very small fraction (just a few %) of the entire nodal population. Com-
putational efficiency is thereby promoted. The second type of grid may be more efficient than the first because some of the
nodes in patch/cloud may also to amendable to conventional finite difference treatment.

When the first type of grid is applied, one may suspect that the present method is similar to the Chimera scheme where
the grid is also boundary-fitted. However, as mentioned above, the GFD scheme is very flexible and can deal with any kind of
unstructured nodal distribution in theory. In this sense, the present method is different from a Chimera scheme. Besides this,
for a Chimera scheme, each grid is associated with its own special reference frame, which is frequently non-Cartesian in or-
der to take advantage of the particular geometry of the enclosed object (such as polar coordinate system for a cylinder). Chi-
mera schemes based on the use of generalized (smooth) coordinate systems are typically not good at handling highly
complex geometry. Chimera schemes then employ an interpolation technique to meld the solutions in different grid do-
mains. In the present method, all flow computations are based on a single global computational frame. Cartesian nodes that
have meshfree node(s) within its closed ½�Dx;Dx� � ½�Dy;Dy� � ½�Dz;Dz� neighbourhood are treated by SVD–GFD method.
All the nodes are linked together and the solution procedure is performed on Cartesian and meshfree nodes simultaneously.
Thus, no interpolation is required.

Hybrid meshfree-and-Cartesian grids are employed in the present study. The enveloping cloud of meshfree nodes convec-
ts synchronously with the boundary nodes of the moving body or surface. The motion of the nodes is tracked in Lagrangian
manner in accordance with
xnþ1
b ¼ xn

b þ unþ1=2
b Dt; ð13Þ
where xn
b denotes the spatial position of a boundary or cloud node b at time level n and unþ1=2

b is the prescribed convecting
velocity of the node b at time tnþ1=2 ¼ ðnþ 1=2ÞDt. The fluid dynamics at these convecting nodes are governed by the mixed
Lagrangian–Eulerian form of the Navier–Stokes Eqs. (5) and (6).
4.2. Organization of nodal search

The implementation of GFD (Section 2) involves search for neighbouring support nodes. The nearest N P 19 nodes are
usually selected for this purpose. To facilitate and expedite the search for nearest neighbours, we assign each meshfree node
Fig. 2. A Cartesian-based nodal cloud/patch around an immersed body.
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(including the boundary nodes) to the Cartesian background cell ðDx;Dy;DzÞ that contains it. A meshfree node B at the posi-
tion rB ¼ ðx; y; zÞB is contained in a Cartesian cell identified by its nodal label:
ði; j; kÞB ¼ ðintðxB=DxÞ; intðyB=DyÞ; intðzB=DzÞÞ; ð14Þ
where ‘int’ denotes the integer part. A list of non-empty Cartesian cells, and the meshfree nodes that they contain, is main-
tained. The non-empty Cartesian cells are very small in number compared to the total number of Cartesian cells in the com-
putational field. The list of non-empty Cartesian cells and their contents of cloud nodes are updated at every time step in a
moving body problem.

Thus to find one or more meshfree nodes (of the nodal cloud) that are closest in distance to a particular Cartesian back-
ground node ði; j; kÞ, we need only to restrict the search to meshfree nodes that are contained within the ði; j; kÞ-Cartesian cell
and its neighbouring cells from the maintained list. Similarly, to find a meshfree node that is nearest to a given meshfree
node B, we first locate the Cartesian cell ði; j; kÞB (using (14)) that contains B, and then search for the nearest meshfree nodes
that are contained within ði; j; kÞB-Cartesian cell and its neighbouring cells from the list.

By the above and related considerations, one can greatly reduce the cost needed to find the near neighbours of a given
node. This is especially significant for moving body problems, where the nodal configuration is constantly changing.
4.3. Determination of overlapped Cartesian base nodes

In the present grid setup, nodes belonging to the Cartesian background grid are not involved in computation when they
are covered by a solid body or medium. These are termed here overlapped nodes and assigned the computational status 0.
The set of overlapped nodes, also termed exterior nodes in the studies of Chew et al. [39], changes with time because of the
motion of the body/boundary. We need to identify these nodes in the course of simulation.

To determine the set of overlapped Cartesian nodes, we onl